Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval
نویسنده
چکیده
We consider kernel-type methods for estimation of a density on [0, 1] which eschew explicit boundary correction. Our starting point is the successful implementation of beta kernel density estimators of Chen (1999). We propose and investigate two alternatives. For the first, we reverse the roles of estimation point x and datapoint Xi in each summand of the estimator. For the second, we provide kernels that are symmetric in x and X; these kernels are conditional densities of bivariate copulas. We develop asymptotic theory for the new estimators and compare them with Chen’s in a substantial simulation study. We also develop automatic bandwidth selection in the form of ‘rule-of-thumb’ bandwidths for all three estimators. We find that our second proposal, that based on ‘copula kernels’, seems particularly competitive with the beta kernel method of Chen in integrated squared error performance terms. Advantages include its greater range of possible values at 0 and 1, the fact that it is a bona fide density, and that the individual kernels and resulting estimator are comprehensible in terms of a direct single picture (as is ordinary kernel density estimation on the line).
منابع مشابه
On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Estimation∗
This paper studies the effect of bias correction on confidence interval estimators in the context of kernel-based nonparametric density estimation. We consider explicit plug-in bias correction but, in contrast to standard approaches, we allow the bias estimator to (potentially) have a first-order impact on the distributional approximation. This approach is meant to more accurately capture the f...
متن کاملA Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator
In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, ...
متن کاملThe Relative Improvement of Bias Reduction in Density Estimator Using Geometric Extrapolated Kernel
One of a nonparametric procedures used to estimate densities is kernel method. In this paper, in order to reduce bias of kernel density estimation, methods such as usual kernel(UK), geometric extrapolation usual kernel(GEUK), a bias reduction kernel(BRK) and a geometric extrapolation bias reduction kernel(GEBRK) are introduced. Theoretical properties, including the selection of smoothness para...
متن کاملTHE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)
Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. Small area estimation is needed in obtaining information on a small area, such as sub-district or village. Generally, in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کاملStatistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm
This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 54 شماره
صفحات -
تاریخ انتشار 2010